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Abstract
Elementary, one- and two-point, Bäcklund transformations are constructed for
the generic case of the sl(2) Gaudin magnet. The spectrality property is used
to construct these explicitly given, Poisson integrable maps which are time
discretizations of the continuous flows with any Hamiltonian from the spectral
curve of the 2 × 2 Lax matrix.

PACS numbers: 1220, 0230, 1110

1. Introduction

Bäcklund transformations (BTs) are an essential tool used to generate new solutions out of
given solutions to integrable equations. This is by now a well-developed area, with elegant
BTs having been found and studied for almost all integrable hierarchies, see [1, 2].

The theory of BTs for evolution equations entered the subject of finite-dimensional
integrability through the discretization of time variable(s). One of the most important and
earliest accounts on this subject is in the papers by Veselov [3] where integrable Lagrange
correspondences were introduced as discrete-time analogues of integrable continuous flows.
Veselov clarified the geometric meaning of these correspondences as finite shifts on Jacobians
and gave several important examples. The reader is referred to an extensive literature which
has appeared since then: see, for instance, [4–7] and references therein.

In this paper, following the approach of [8], we look at BTs for finite-dimensional
(Liouville) integrable systems as special canonical transformations, thereby taking a
Hamiltonian point of view. We introduce and study several new properties of BTs which
appear to be very natural in such an approach.

BTs for finite-dimensional integrable systems are defined in this paper as symplectic, or
more generally Poisson, integrable maps which are explicit maps (rather than the implicit multi-
valued correspondences of [3]) and which can be viewed as time discretizations of particular
continuous flows. The most characteristic features of such maps are: (i) BTs preserve the
same set of integrals of motion as does the continuous flow which they discretize, (ii) they
depend on a (Bäcklund) parameter λ that specifies the corresponding shift on a Jacobian or
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on a generalized Jacobian [9] and (iii) a spectrality property holds with respect to λ and to the
‘conjugate’ variable µ, which means that the point (λ, µ) belongs to the spectral curve [8,10].

Because of the above properties, the constructed BTs are suitable as explicit (symplectic)
geometric integrators. Explicitness makes these maps purely iterative, while the importance
of the parameter λ is that it allows an adjustable discrete time step. The spectrality property is
strongly related to the symplecticness of the map. Finally, numerical integrators which exactly
preserve the level set of integrals and at the same time are symplectic proved to be impossible
to find for generic Hamiltonian dynamics [11], but for integrable flows they do exist and so
are in demand.

In this paper we consider a generic (diagonal) case of the sl(2) XXX Gaudin magnet which
is an algebraic completely integrable system. We study the problem of constructing elementary
(one- and two-point) BTs for this system. In section 3 we construct an elementary (one-point)
BT which gives an exact discretization of a specific continuous flow. By making a two-point
composite map in section 7 we are then able to discretize any of the independent commuting
flows with the Hamiltonians from the spectral curve of the 2 × 2 Lax matrix.

2. Gaudin magnet

The sl(2) Gaudin magnet is derived from the Lax matrix

L(u) =
n∑

j=1

1

u− aj

(
s3
j s−j
s+
j −s3

j

)
+ α

(
1 0
0 −1

)
=
(
A(u) B(u)

C(u) −A(u)
)

(2.1)

A(u) = α +
n∑

j=1

s3
j

u− aj
B(u) =

n∑
j=1

s−j
u− aj

C(u) =
n∑

j=1

s+
j

u− aj
. (2.2)

Local variables in this model are generators of the direct sum of n sl(2) spins, s3
j , s±j ,

j = 1, . . . , n, with the following Poisson brackets:

{s3
j , s

±
k } = ∓iδjks

±
k {s+

j , s
−
k } = −2iδjks

3
k . (2.3)

We denote Casimir operators (spins) as sj :

s2
j = (s3

j )
2 + s+

j s
−
j . (2.4)

Fixing Casimirs sj we go to a symplectic leaf where the Poisson bracket is non-degenerate, so
that the symplectic manifold is a collection of n spheres.

Let us also introduce the total spin �J which will be used later, as follows:

J3 =
n∑

j=1

s3
j J+ =

n∑
j=1

s+
j J− =

n∑
j=1

s−j . (2.5)

The Lax matrix (2.1) satisfies the linear r-matrix Poisson algebra,

{L1(u), L2(v)} = [r(u− v), L1(u) + L2(v)] (2.6)

with the permutation matrix as the r-matrix

r(u− v) = i

u− v




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (2.7)

Here we use standard notations L1 and L2 for tensor products:

L1(u) = L(u)⊗
(

1 0
0 1

)
L2(v) =

(
1 0
0 1

)
⊗ L(v). (2.8)
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Equation (2.6) is equivalent to the following Poisson brackets for the rational functions A(u),
B(u) and C(u):

{A(u),A(v)} = {B(u), B(v)} = {C(u), C(v)} = 0 (2.9)

{A(u), B(v)} = i

u− v
(B(v)− B(u)) (2.10)

{A(u), C(v)} = −i

u− v
(C(v)− C(u)) (2.11)

{C(u), B(v)} = −2i

u− v
(A(v)− A(u)). (2.12)

The spectral curve �,

� : det(L(u)− v) = 0 (2.13)

is a hyperelliptic, genus n− 1 curve,

v2 = A2(u) + B(u)C(u) = α2 +
n∑

j=1

(
Hj

u− aj
+

s2
j

(u− aj )2

)
(2.14)

with the Hamiltonians (integrals of motion) Hj of the form

Hj =
∑
k 
=j

2s3
j s

3
k + s+

j s
−
k + s−j s

+
k

aj − ak
+ 2αs3

j . (2.15)

These are integrals of motion, or Hamiltonians, of the sl(2)Gaudin magnet, which are Poisson
commuting:

{Hj,Hk} = 0 j, k = 1, . . . , n. (2.16)

Notice that there is one linear integral:
n∑

j=1

Hj = 2αJ3. (2.17)

We can bring the curve � into the canonical form by scaling the variable v �→ v̂:

v̂ = v

n∏
j=1

(u− aj ). (2.18)

The equation of the curve becomes

v̂2 =
[
α2 +

n∑
j=1

(
Hj

u− aj
+

s2
j

(u− aj )2

)] n∏
j=1

(u− aj )
2

= α2u2n + f1u
2n−1 + f2u

2n−2 + · · · + f2n. (2.19)

When α = 0 the genus of the curve drops to n−2, because f1 = 0 in such a case. The Gaudin
magnet then becomes sl(2) invariant: as well as integrals (2.15) all three components of the
total spin �J are integrals too,

α = 0 : {Hj, Jk} = 0 j = 1, . . . , n k = 1, 2, 3. (2.20)

We do not consider this case, but concentrate on the generic case of α 
= 0 when there is only
one linear integral f1 = 2α(J3 − α

∑n
j=1 aj ). The latter case is called the generic (diagonal)

case of the sl(2) XXX Gaudin magnet. It is known that all its flows are linearized on the
generalized Jacobian of the hyperelliptic curve (2.19): see references in [9].
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3. One-point basic map

The sl(2) Gaudin magnet with the 2 × 2 Lax matrix (2.1) is within the class of systems
that was considered recently in [9], namely it belongs to the (even) case of the generalized
Jacobian. Hence, its BTs can be extracted from that paper. However, we want to present here
an independent derivation of those BTs as well as give a more detailed exposition of their
various properties. The reader is referred to [9] for explanation of the geometric meaning of
BTs.

A BT should act on the Lax matrix as a similarity transform:

L(u) �→ M(u)L(u)M(u)−1 ∀u (3.1)

with some non-degenerate 2 × 2 matrix M(u), simply because a BT should preserve the
spectrum of L(u).

We introduce tilde (˜) notation for the up-dated variables:

L̃(u) =
n∑

j=1

1

u− aj

(
s̃3
j s̃−j
s̃+
j −s̃3

j

)
+ α

(
1 0
0 −1

)
=
(
Ã(u) B̃(u)

C̃(u) −Ã(u)
)

(3.2)

Ã(u) = α +
n∑

j=1

s̃3
j

u− aj
B̃(u) =

n∑
j=1

s̃−j
u− aj

C̃(u) =
n∑

j=1

s̃+
j

u− aj
(3.3)

{s̃3
j , s̃

±
k } = ∓iδjks̃

±
k {s̃+

j , s̃
−
k } = −2iδjks̃

3
k . (3.4)

We are looking for a Poisson map that intertwines two Lax matrices L(u) and L̃(u):

M(u)L(u) = L̃(u)M(u) ∀u. (3.5)

Because spins sj , j = 1, . . . , n, appear as coefficients of the curve, they are not changed by
the map, i.e. s̃j = sj . Hence, we can talk about a symplectomorphism (sj = const) instead of
a Poisson map.

Now we should choose an ansatz for the dependence of the matrix M(u) on the spectral
parameter u. Let us fix the simplest case of a linear function:

M(u) = M1u + M0. (3.6)

Taking the limit u → ∞ in (3.5) we conclude that M1 must be diagonal. Moreover, the most
elementary (one-point) BT should correspond to the case when detM(u) has only one zero
u = λ, which will lead to having only one Bäcklund parameter (cf the spectrality property
in [8, 10]). So, we should choose either

M1 =
(

1 0
0 0

)
or M1 =

(
0 0
0 1

)
. (3.7)

We will consider the first case, as the second one will produce a similar BT (moving in
discrete time in the positive and in the negative direction). Finally, we arrive at the following
parametrization of the unknown matrix M(u):

M(u) =
(
u− λ + pq/γ p

q γ

)
(3.8)

with the c-number determinant

detM(u) = γ (u− λ). (3.9)

Here the variables p and q are indeterminate dynamical variables, but λ and γ are c-number
Bäcklund parameters. (M(u) comes from aL-operator of the quadratic r-matrix algebra whose
det is a Casimir, see [12].)
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Comparing asymptotics in u in both sides of (3.5) we readily get

p = J−
2α

q = J̃+

2α
. (3.10)

If we want an explicit single-valued map from L(u) to L̃(u)

L(u) �→ L̃(u) = M(u)L(u)M−1(u) (3.11)

then we must expressM(u), and therefore p and q, in terms of the old variables, i.e. the entries
of L(u) only. There is, however, a problem, since from (3.10) we have only the expression
for the p, but the variable q is given in terms of the new, and therefore unknown, variable J̃+.
To overcome this difficulty we use an extra piece of data, namely the spectrality. As well as
equation (3.5) that our map satisfies, it will be parametrized by the point P on the curve �,

P = (λ, µ) ∈ �. (3.12)

Notice that there are two points on the curve�, P = (λ,+µ) andQ = (λ,−µ), corresponding
to a fixed λ and sitting one above the other because of the hyperelliptic involution:

(λ, µ) ∈ � : det(L(λ)− µ) = 0 ⇔ µ2 + det(L(λ)) = 0. (3.13)

Because det(M(λ)) = 0 the matrix M(λ) has a one-dimensional kernel

M(λ)" =
(
pq/γ p

q γ

)
" = 0 " =

(
γ

−q
)
. (3.14)

The equality

M(λ)L(λ)" = L̃(λ)M(λ)" = 0 (3.15)

implies that L(λ)" ∼ ", so that " is an eigenvector of L(λ). Let us fix the corresponding
point of the spectrum as P = (λ, µ):(

A(λ)− µ B(λ)

C(λ) −A(λ)− µ

)(
γ

−q
)

= 0. (3.16)

This gives us the formula for the variable q:

q = γ
A(λ)− µ

B(λ)
= −γ C(λ)

A(λ) + µ
. (3.17)

The two last expressions are equivalent since (λ, µ) ∈ �.
Now, the formulae (3.8), (3.10), (3.11), and (3.17) give a one-point Poisson integrable

map (≡ one-point BT) from L(u) to L̃(u). The map is parametrized by one point (λ, µ) on
the spectral curve � (and by an extra parameter γ ).

Explicitly, it reads

Ã(u) = γ (u− λ + 2pq/γ )A(u)− q(u− λ + pq/γ )B(u) + pγC(u)

γ (u− λ)
(3.18)

B̃(u) = (u− λ + pq/γ )2B(u)− 2p(u− λ + pq/γ )A(u)− p2C(u)

γ (u− λ)
(3.19)

C̃(u) = γ 2C(u) + 2qγA(u)− q2B(u)

γ (u− λ)
. (3.20)

Equating residues at u = aj in both sides of the above equations, we obtain the map in terms
of the local spin variables:

s̃3
j = γ (aj − λ + 2pq/γ )s3

j − q(aj − λ + pq/γ )s−
j + pγ s+

j

γ (aj − λ)
(3.21)
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s̃−j = (aj − λ + pq/γ )2s−j − 2p(aj − λ + pq/γ )s3
j − p2s+

j

γ (aj − λ)
(3.22)

s̃+
j = γ 2s+

j + 2qγ s3
j − q2s−j

γ (aj − λ)
. (3.23)

Recall that α, aj and sj , j = 1, . . . , n, are parameters of the model; γ and λ are parameters of
the map and variables p and q are as follows:

p = J−
2α

q = γ
A(λ)− µ

B(λ)
= −γ C(λ)

A(λ) + µ
(3.24)

µ2 = α2 +
n∑

j=1

(
Hj

λ− aj
+

s2
j

(λ− aj )2

)
(3.25)

Hj =
∑
k 
=j

2s3
j s

3
k + s+

j s
−
k + s−j s

+
k

aj − ak
+ 2αs3

j . (3.26)

4. BT as a discrete-time map

In this section we show that the BT constructed above can be seen as a time discretization of a
specific Hamiltonian flow where the parameter λ plays the role of inversion of the time step.

Consider the limit λ → ∞. Then

µ = α + O

(
1

λ

)
. (4.1)

Assume that

γ = −λ + γ0 + O

(
1

λ

)
. (4.2)

Then we have the following expansion for the matrix M(u):

M(u) = −λ
(

1 − 1

2λ
M0(u)

)
+ O

(
1

λ

)
. (4.3)

The equation of the map, M(u)L(u) = L̃(u)M(u), turns in this limit into the Lax pair of a
continuous flow:

L̇(u) = [L(u),M0(u)] M0(u) =
(
u− γ0 J−/α
J+/α −u + γ0

)
(4.4)

where 1/(2λ) is a time step and L̇(u) ≡ limλ→∞ 2λ(L̃(u)− L(u)) is the time derivative.
The flow (4.4) is a Hamiltonian flow

L̇(u) = {H,L(u)} (4.5)

with the Hamiltonian function H as

H = i

α

(
J+J− + 2α

n∑
j=1

(aj − γ0)s
3
j

)
. (4.6)

Therefore, the constructed BT is a two-parameter (λ, γ ) time discretization of this continuous
flow.
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5. Symplecticity

In this section we give a simple proof of symplecticity of the constructed map by finding an
explicit generating function of the corresponding canonical transformation from the old to new
variables.

First, because the spin variables (Casimirs) do not change,

s2
j = (s3

j )
2 + s+

j s
−
j = (s̃3

j )
2 + s̃+

j s̃
−
j (5.1)

we can exclude the variables s+
j and s̃−j , j = 1, . . . , n,

s+
j = s2

j − (s3
j )

2

s−j
s̃−j = s2

j − (s̃3
j )

2

s̃+
j

(5.2)

expressing everything in terms of 2n ‘canonical’ variables (s3
j , s

−
j )

n
j=1 and (s̃3

j , s̃
+
j )
n
j=1 with the

following Poisson brackets:

{s3
j , s

−
k } = iδjks

−
k {s̃3

j , s̃
+
k } = −iδjks̃

+
k . (5.3)

We want to represent our BT as a canonical transformation defined by the generating function
F(s̃ +|s−) ≡ Fλ,γ (s̃

+|s−) such that

s3
j = is−j

∂F (s̃ +|s−)
∂s−j

s̃3
j = is̃+

j

∂F (s̃ +|s−)
∂s̃+

j

. (5.4)

Notice that we have chosen the arguments of the generating function as (s̃+
j |s−j )nj=1. Because

the symplecticity property does not depend on the choice of the arguments of its generating
function, these arguments are fixed in order to get a simpler expression for the function Fλ,γ
(recall that the variables p and q of (3.10) depend exactly on these variables).

Rewrite now the equations of the map (3.21)–(3.23) in the form(
γ s3

j − J̃+

2α
s−j

)2

+ γ (aj − λ)s̃+
j s

−
j − γ 2s2

j = 0 (5.5)

(
γ s̃3

j − J−
2α

s̃+
j

)2

+ γ (aj − λ)s̃+
j s

−
j − γ 2s2

j = 0. (5.6)

Resolving them with respect to s3
j and s̃3

j , we obtain

s3
j = J̃+

2αγ
s−j + zj s̃3

j = J−
2αγ

s̃+
j + zj (5.7)

z2
j = s2

j − aj − λ

γ
s̃+
j s

−
j j = 1, . . . , n. (5.8)

It is now easy to check that the function

Fλ,γ (s̃
+|s−) = −i

J̃+J−
2αγ

− i
n∑

j=1

(
2zj + sj log

zj − sj

zj + sj

)
(5.9)

satisfies equations (5.4). Thereby symplecticity of the map is proven.

6. Spectrality

The map depends on two parameters, λ and γ . Let us first concentrate on its λ-dependence.
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Spectrality, which was introduced in [8], is an interesting property of BTs. It usually holds
for any BT which has a parameter. Technically, this means that the components of the point
P = (λ, µ) ∈ � which parametrizes the map are conjugated variables, namely

µ = ∂Fλ,γ (s̃
+|s−)

∂λ
. (6.1)

To prove this formula, use (3.10) and (3.17) to find the formula for the µ,

µ = A(λ)− J̃+

2αγ
B(λ). (6.2)

Now, with the help of (5.7) and (5.9) we can easily check the needed formula for the spectrality
property (6.1).

A new (compared with [8]) observation is that there is also an analogous property with
respect to the parameter γ , only now it is the integral J3 that plays the role of the conjugated
variable:

J3 = −γ ∂Fλ,γ (s̃
+|s−)

∂γ
. (6.3)

The proof is very simple, once we notice that (5.7) entails

J3 = J̃+J−
2αγ

+
n∑

j=1

zj . (6.4)

To conclude this section we remark that, because of the second ‘spectrality’ property (6.3),
which was somehow built into the BT from the very beginning, one can recover the generating
function of the map just by taking one integral,

Fλ,γ (s̃
+|s−) =

∫ γ
(

−J3

γ

)
dγ + const (6.5)

without needing to solve the system of 2n differential equations (5.7).

7. Inverse map and a two-point map

In this section we first construct the inverse BT and then use it to derive the two-point BT
which will be a composition of the direct map parametrized by the point P1 = (λ1, µ1) ∈ �

and the inverse map parametrized by the point Q2 = (λ2,−µ2) ∈ �.

7.1. The inversion of the Bäcklund transformation

Let us call the direct map BP . The inverse map acts from L̃(u) to L(u). We can rewrite the
equations for BP in the inverse form

M∧(u)L̃(u) = L(u)M∧(u) M∧(u) =
(
γ −p

−q u− λ + pq/γ

)
. (7.1)

To define the inverse map we must find expressions for the co-factor matrix M∧(u), or for the
variables p and q, in terms of ˜-variables, i.e. in terms of the entries of L̃(u). We already have
the expressions of (3.10),

p = J−
2α

q = J̃+

2α
(7.2)
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which define q. To obtain the formula for the variable p we again use the spectrality property.
The matrix M∧(λ) has a one-dimensional kernel "̃,

M∧(λ)"̃ =
(
γ −p

−q pq/γ

)
"̃ = 0 "̃ =

(
p

γ

)
. (7.3)

The main difference compared with the formulae of the direct map is that the inverse map will
be parametrized by the point Q = (λ,−µ) ∈ �, not P = (λ, µ) ∈ �. Therefore, "̃ is an
eigenvector of the matrix L̃(u) with the eigenvalue Q = (λ,−µ):(

Ã(λ) + µ B̃(λ)

C̃(λ) −Ã(λ) + µ

)(
p

γ

)
= 0. (7.4)

This gives us the formula needed for the variable p,

p = γ
Ã(λ)− µ

C̃(λ)
= −γ B̃(λ)

Ã(λ) + µ
. (7.5)

To prove that this does indeed give the inverse map, we have to show that the two
formulae, (3.17) and (7.5), in fact define the same variable µ:

µ = Ã(λ)− p

γ
C̃(λ)

?= A(λ)− q

γ
B(λ). (7.6)

It is easy to see that this equation is the (11)-element of the matrix identity:

M∧(λ)L̃(λ) = L(λ)M∧(λ). (7.7)

We denote as BQ the map which is inverse to the map BP . Generally speaking, we have
constructed four different maps, BP , BQ, BQ, and BP , with two pairs of maps which are
inverse to each other:

BQ ◦ BP = BP ◦ BQ = BP ◦ BQ = BQ ◦ BP = Id. (7.8)

7.2. The two-point map BP1,Q2

We now construct a composite map which is a product of the map BP1 ≡ B(λ1,µ1) and
BQ2 ≡ B(λ2,−µ2):

BP1,Q2 = BQ2 ◦ BP1 . (7.9)

The second parameter of the basic map, namely the γ , is taken to be the same in both maps,
so γ1 = γ2. Obviously, when λ1 = λ2 (and µ1 = µ2) this composite map will turn into an
identity map.

The first map BP1 reads as follows:

M1(u)L(u) = L̃(u)M1(u) M1(u) =
(
u− λ1 + p1q1/γ p1

q1 γ

)
(7.10)

where the formulae for the variables p1 and q1 are

p1 = J−
2α

= γ
Ã(λ1)− µ1

C̃(λ1)
= −γ B̃(λ1)

Ã(λ1) + µ1

(7.11)

q1 = J̃+

2α
= γ

A(λ1)− µ1

B(λ1)
= −γ C(λ1)

A(λ1) + µ1
. (7.12)

The second map BQ2 reads as follows:

M2(u)L̃(u) = ˜̃
L(u)M2(u) M2(u) =

(
γ −p2

−q2 u− λ2 + p2q2/γ

)
(7.13)
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where the formulae for the variables p2 and q2 are

p2 =
˜̃
J−
2α

= γ
Ã(λ2)− µ2

C̃(λ2)
= −γ B̃(λ2)

Ã(λ2) + µ2

(7.14)

q2 = J̃+

2α
= γ

˜̃
A(λ2)− µ2

˜̃
B(λ2)

= −γ
˜̃
C(λ2)

˜̃
A(λ2) + µ2

. (7.15)

Notice that q1 is equal to q2, hence we omit the sub-index, q1 = q2 = q.

The composite map BP1,Q2 acts from L(u) to ˜̃
L(u),

M(u)L(u) = ˜̃
L(u)M(u) (7.16)

M(u) = 1

γ
M2(u)M1(u) =

(
u− λ1 + q

γ
(p1 − p2) p1 − p2

q

γ
(λ1 − λ2 − q

γ
(p1 − p2)) u− λ2 − q

γ
(p1 − p2)

)
. (7.17)

In order to get rid of the intermediate ˜ -variables, we use the spectrality property with
respect to two points, P1 = (λ1, µ1) and Q2 = (λ2,−µ2). Obviously, both spectralities are
still valid after composing the maps. For the point P1 we get the following equations:

M(λ1)"1 = 0 "1 =
(
γ

−q
)

L(λ1)"1 = µ1"1

⇒ q = γ
A(λ1)− µ1

B(λ1)
= −γ C(λ1)

A(λ1) + µ1
(7.18)

M∧(λ1)
˜̃
"1 = 0 ˜̃

"1 =
(

p1 − p2

λ1 − λ2 − q

γ
(p1 − p2)

)
˜̃
L(λ1)

˜̃
"1 = −µ1

˜̃
"1

⇒ p1 − p2 = γ (λ2 − λ1)
˜̃
B(λ1)

γ (
˜̃
A(λ1) + µ1)− q

˜̃
B(λ1)

= γ (λ1 − λ2)(
˜̃
A(λ1)− µ1)

q(
˜̃
A(λ1)− µ1) + γ ˜̃

C(λ1)
. (7.19)

For the point Q2 we get the second set of equations:

M(λ2)"2 = 0 "2 =
(

p1 − p2

λ1 − λ2 − q

γ
(p1 − p2)

)
L(λ2)"2 = −µ2"2

⇒ p1 − p2 = γ (λ2 − λ1)B(λ2)

γ (A(λ2) + µ2)− qB(λ2)
= γ (λ1 − λ2)(A(λ2)− µ2)

q(A(λ2)− µ2) + γC(λ2)
(7.20)

M∧(λ2)
˜̃
"2 = 0 ˜̃

"2 =
(
γ

−q
)

˜̃
L(λ2)

˜̃
"2 = µ2

˜̃
"2

⇒ q = γ

˜̃
A(λ2)− µ2

˜̃
B(λ2)

= −γ
˜̃
C(λ2)

˜̃
A(λ2) + µ2

. (7.21)

Equations (7.18) and (7.21) are already known to us (cf (7.12) and (7.15)). The
formulae (7.19) and (7.20) for the variable p1 − p2 are new. They are equivalent to the

formulae (7.11) and (7.14) expressed in terms of entries of L(u) and ˜̃
L(u).

Concluding, we have constructed a two-point BT which is factorized to two one-point
BTs and which is explicitly given, together with its inverse, by the formulae:

M(u)L(u) = ˜̃
L(u)M(u) M(u) =

(
u− λ1 + xX X

−x2X + (λ1 − λ2)x u− λ2 − xX

)
(7.22)

where

x := A(λ1)− µ1

B(λ1)
= − C(λ1)

A(λ1) + µ1
=

˜̃
A(λ2)− µ2

˜̃
B(λ2)

= −
˜̃
C(λ2)

˜̃
A(λ2) + µ2

(7.23)
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X := (λ2 − λ1)B(λ1)B(λ2)

B(λ1)(A(λ2) + µ2)− B(λ2)(A(λ1)− µ1)
(7.24)

= (λ1 − λ2)B(λ1)(A(λ2)− µ2)

(A(λ1)− µ1)(A(λ2)− µ2) + B(λ1)C(λ2)
(7.25)

= (λ2 − λ1)B(λ2)(A(λ1) + µ1)

(A(λ1) + µ1)(A(λ2) + µ2) + B(λ2)C(λ1)
(7.26)

= (λ1 − λ2)(A(λ1) + µ1)(A(λ2)− µ2)

(A(λ1) + µ1)C(λ2)− (A(λ2)− µ2)C(λ1)
(7.27)

= (λ2 − λ1)
˜̃
B(λ2)

˜̃
B(λ1)

˜̃
B(λ2)(

˜̃
A(λ1) + µ1)− ˜̃

B(λ1)(
˜̃
A(λ2)− µ2)

(7.28)

= (λ1 − λ2)
˜̃
B(λ2)(

˜̃
A(λ1)− µ1)

(
˜̃
A(λ2)− µ2)(

˜̃
A(λ1)− µ1) + ˜̃

B(λ2)
˜̃
C(λ1)

(7.29)

= (λ2 − λ1)
˜̃
B(λ1)(

˜̃
A(λ2) + µ2)

(
˜̃
A(λ2) + µ2)(

˜̃
A(λ1) + µ1) + ˜̃

B(λ1)
˜̃
C(λ2)

(7.30)

= (λ1 − λ2)(
˜̃
A(λ2) + µ2)(

˜̃
A(λ1)− µ1)

(
˜̃
A(λ2) + µ2)

˜̃
C(λ1)− (

˜̃
A(λ1)− µ1)

˜̃
C(λ2)

. (7.31)

The above formulae give several equivalent expressions for the variables x and X since the
points (λ1, µ1) and (λ2,−µ2) belong to the spectral curve �, i.e. are bound by the following
relations:

µ2
1 = A2(λ1) + B(λ1)C(λ1) µ2

2 = A2(λ2) + B(λ2)C(λ2) (7.32)

µ2
1 = ˜̃

A2 (λ1) + ˜̃
B(λ1)

˜̃
C(λ1) µ2

2 = ˜̃
A2 (λ2) + ˜̃

B(λ2)
˜̃
C(λ2). (7.33)

7.3. Two-point map as a discrete-time map

We will see in this section that the two-point map constructed above is a one-parameter, λ1,
time discretization of a family of flows parametrized by the point Q2 = (λ2,−µ2), with the
difference λ1 − λ2 playing the role of the time step.

Indeed, consider the limit λ1 → λ2,

λ1 = λ2 + ε ε → 0. (7.34)

It is easy to see from the formulae of the previous section that

x = x0 + O(ε) x0 = A(λ2)− µ2

B(λ2)
= − C(λ2)

A(λ2) + µ2
(7.35)

and

X = εX0 + O(ε2) X0 = −B(λ2)

2µ2
. (7.36)

Then we derive that the matrix M(u) has the following asymptotics:

M(u) = (u− λ2)

(
1 − ε

2µ2(u− λ2)

(
A(λ2) + µ2 B(λ2)

C(λ2) −A(λ2) + µ2

))
+ O(ε2). (7.37)

If we now define the time derivative L̇(u) as

L̇(u) = lim
ε→0

˜̃
L(u)− L(u)

ε
(7.38)
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then in the limit we obtain from the equation of the map, M(u)L(u) = ˜̃
L(u)M(u), the Lax

equation for a corresponding continuous flow that our BT discretizes, namely

L̇(u) =
[
L(u),

L(λ2)

2µ2(u− λ2)

]
. (7.39)

This is a Hamiltonian flow with µ2,

µ2 =
√
A2(λ2) + B(λ2)C(λ2) =

√√√√α2 +
n∑

j=1

(
Hj

λ2 − aj
+

s2
j

(λ2 − aj )2

)

as the Hamiltonian function,

L̇(u) = −i{µ2, L(u)}. (7.40)

This means that the two-point map discretizes a one-parameter family of flows. Having
chosen the parameter λ2 to be equal to any of the poles of the Lax matrix (parameters of the
model) aj , j = 1, . . . , n, the map leads to n different maps, each discretizing the flow with
the corresponding Hamiltonian Hj , j = 1, . . . , n. Indeed, taking the limit λ2 → aj ,

λ2 = aj + ε ε → 0. (7.41)

Then we have

µ2 = sj

ε
+
Hj

2sj
+ O(ε) (7.42)

and in this limit the Lax equation (7.39), (7.40) turns into

L̇(u) = − i

2sj
{Hj,L(u)} =

[
L(u),

1

2sj (u− aj )

(
s3
j s−j
s+
j −s3

j

)]
. (7.43)

Let us denote a collection of these maps by {BHj

P1
}nj=1. The map B

Hk

P1
discretizes the

flow governed by the Hamiltonian Hk with λ1 − ak playing the role of the discrete time-step
parameter. The map (and its inverse) is defined by the two-point matrix M(u) (7.22) with the
following expressions for the variables x and X:

x = A(λ1)− µ1

B(λ1)
=

˜̃s 3

k − sk

˜̃s −
k

(7.44)

X = (ak − λ1)B(λ1)s
−
k

B(λ1)(s
3
k + sk)− s−k (A(λ1)− µ1)

= (ak − λ1)
˜̃
B(λ1) ˜̃s −

k

˜̃s −
k (

˜̃
A(λ1) + µ1)− ˜̃

B(λ1)( ˜̃s 3

k − sk)
. (7.45)

All these maps are explicit Poisson maps, preserving Hamiltonians and having the
spectrality property with respect to the pair of variables (λ1, µ1).

8. Concluding remarks

One of the very important branches of the theory of finite-dimensional integrable systems is
the area of discrete-time integrable systems. Interest in this area was revived at the beginning
of the 1990s by Veselov in a series of works (see [3]). He defined integrable Lagrange
correspondences as discrete-time analogues of integrable continuous flows, clarified their
geometric meaning as finite shifts on Jacobians and gave several important examples. Since
then the subject has been developed further by many authors. It is not our intention to review
the many important recent contributions made to the field, which would require much more
space. Instead, here we only mention briefly the main features of a new recent approach to
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constructing integrable maps that was introduced in [8, 10, 12], developed in [9] and is also
used in this paper, which we refer to as BTs for finite-dimensional integrable systems.

One of the new features of this approach to discrete-time integrability is the spectrality
property which is a projection on the classical case of the well known (quantum) Baxter
equation. It was discovered on the examples of Toda lattice and elliptic Ruijsenaars system
in [8] and was generalized to the integrable case of the DST model in [10]. Later, it was observed
that the property is universal and that, in effect, it gives a canonical way of parametrizing the
corresponding shift on the Jacobian which is characterized by adding a point (λ, µ) to a divisor
of points on the spectral curve � [9].

A direct consequence of the spectrality property is the explicitness of the constructed
maps. This new feature, which is an obvious advantage because explicit iterative maps are
much more useful than implicit maps (given as a system of nonlinear equations), was clearly
demonstrated in [9]. This new approach of constructing explicitly given maps has also been
adopted and illustrated in detail in this paper.

Several examples of explicit maps were known earlier, such as McMillan’s map, but all
those cases were exceptional, for in the generic situation, according to Veselov’s approach,
integrable Lagrange/Poisson correspondences are multi-valued maps, i.e. correspondences
rather than maps. Using the spectrality property as extra data allows one to overcome this
drawback and to construct discrete-time integrable flows as genuine maps.

Another new feature of the proposed construction of integrable time discretizations is
an identification of the most elementary, one-point, basic map and construction of composite
maps, like the two-point map, as compositions of the one-point map and its inverse. The
choice of the matrix M(u) (3.8) generating the one-point map is dictated by the algebraic
considerations explained in [12]. In brief, the matrix M(u) should be a simple L-operator of
the quadratic algebra,

{L1(u), L2(v)} = [r(u− v), L1(u)L2(v)] (8.1)

with the same rational r-matrix (2.7) as in the linear algebra (2.6). The number of zeros of
the detM(u) is the number of essential Bäcklund parameters, so that the matrix M(u) in (3.8)
is one-point and the matrix M(u) in (7.22) is two-point. The fact that the right ansatz for the
matrixM(u) obeys the algebra (8.1) usually guarantees that the resulting map will be Poisson:
see [12] for details.

In this paper we have observed a new ‘spectrality’ property of the basic one-point map
with respect to the parameter γ in

detM(u) = γ (u− λ). (8.2)

We have also shown that the two-point map factorizes to two one-point maps.
The two-point map constructed above is probably the most general map for the considered

sl(2) Gaudin model, meaning that it gives a discretization of continuous flows given by any
Hamiltonian Hj , j = 1, . . . , n, from the spectral curve,

v2 = A2(u) + B(u)C(u) = α2 +
n∑

j=1

(
Hj

u− aj
+

s2
j

(u− aj )2

)
. (8.3)

So, at least in principle, any other integrable map for this model should be a function of the n
maps constructed in this paper.

There is no established name for integrable maps with all the qualities mentioned above,
namely (i) spectrality, (ii) explicitness, (iii) Poissonicity, (iv) limits to continuous flows and
(v) preservation of the same integrals as for the continuous flows which these maps discretize.
We have used the same name, BTs, as was used in [8–10, 12].
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The application of the constructed maps as exact numerical integrators of the continuous
flows is considered in [13].
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[8] Kuznetsov V B and Sklyanin E K 1998 On Bäcklund transformations for many-body systems J. Phys. A: Math.
Gen. 31 2241–51
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